数学规划简介
数学规划是应用数学的一个分支,它涉及到数学模型的设计、求解和分析。通过数学规划,我们可以找到最优解,以解决实际问题。
基本概念
目标函数
:描述了我们要优化的量,通常是一个需要最大化或最小化的函数。
约束条件
:描述了目标函数必须满足的限制条件。
应用领域
数学规划在各个领域都有广泛的应用,例如:
工业生产
:优化生产流程,降低成本。
交通运输
:优化路线规划,提高运输效率。
资源分配
:优化资源分配方案,提高资源利用率。
相关链接
数学规划教程
数学规划案例
图片展示