Trigonometry is a branch of mathematics that deals with the relationships between the angles and sides of triangles. Here are key formulas to understand:
1. Basic Definitions
- Sine (sin): $ \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} $
- Cosine (cos): $ \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} $
- Tangent (tan): $ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\text{Opposite}}{\text{Adjacent}} $
2. Fundamental Identities
- Pythagorean Identity: $ \sin^2(\theta) + \cos^2(\theta) = 1 $
- Reciprocal Identities:
- $ \csc(\theta) = \frac{1}{\sin(\theta)} $
- $ \sec(\theta) = \frac{1}{\cos(\theta)} $
- $ \cot(\theta) = \frac{1}{\tan(\theta)} $
3. Angle Addition Formulas
- $ \sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b) $
- $ \cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b) $
- $ \tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a)\tan(b)} $
4. Double Angle Formulas
- $ \sin(2\theta) = 2\sin(\theta)\cos(\theta) $
- $ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) $
- $ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} $
5. Key Relationships
- $ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} $
- $ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} $
- $ \sec(\theta) = \frac{1}{\cos(\theta)} $
- $ \csc(\theta) = \frac{1}{\sin(\theta)} $
For deeper exploration, check our Trigonometry Tutorial or Trigonometry Examples section. Happy learning! 😊