Welcome to our collection of practice problems in linear algebra. These problems are designed to help you deepen your understanding of the subject. We hope you find them challenging and enlightening.

Matrix Operations

  1. Problem: If ( A = \begin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix} ) and ( B = \begin{bmatrix} 5 & 6 \ 7 & 8 \end{bmatrix} ), find ( A \cdot B ).

  2. Problem: Determine if the matrix ( A = \begin{bmatrix} 2 & 3 \ 4 & 5 \end{bmatrix} ) is invertible. If it is, find its inverse.

Systems of Linear Equations

  1. Problem: Solve the following system of equations: [ \begin{align*} 2x + 3y &= 8 \ 4x - y &= 5 \end{align*} ]

  2. Problem: Use Gaussian elimination to find the solution set of the system: [ \begin{align*} 3x + 2y + z &= 6 \ x - 4y + 2z &= -7 \ 2x + y - 3z &= 1 \end{align*} ]

Eigenvalues and Eigenvectors

  1. Problem: Find the eigenvalues and eigenvectors of the matrix ( A = \begin{bmatrix} 4 & -2 \ 2 & 1 \end{bmatrix} ).

  2. Problem: Determine if the matrix ( A = \begin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix} ) is diagonalizable. If it is, find a diagonalizing matrix.

For more in-depth explanations and further practice, be sure to check out our Linear Algebra Guide.

Visualizing Vectors

Understanding vectors is crucial in linear algebra. Here's a visual representation of a vector in 3D space.

3D Vector